## Maths Holiday Homework

## Year 3:

Adding Two 3-Digit Numbers - With Carrying
LO: to use column addition
Calculate the answer to the following:

| $\begin{array}{r} 323 \\ +\quad 518 \\ \hline \end{array}$ | $\begin{array}{r} 607 \\ +\quad 228 \\ \hline \end{array}$ | $\begin{array}{r} 507 \\ +\quad 463 \\ \hline \end{array}$ | $\begin{array}{r}319 \\ +142 \\ \hline\end{array}$ |
| :---: | :---: | :---: | :---: |
| $\begin{array}{r} 257 \\ +706 \\ \hline \end{array}$ | $\begin{array}{r} 505 \\ +\quad 109 \\ \hline \end{array}$ | $\begin{array}{r} 672 \\ +\begin{array}{l} 243 \end{array} \\ \hline \end{array}$ | $+\begin{array}{r} 591 \\ \mathbf{3 6 7} \end{array}$ |
| $\begin{array}{r} 572 \\ +336 \\ \hline \end{array}$ | $\begin{array}{r} 760 \\ +615 \\ \hline \end{array}$ | $\begin{array}{r} 822 \\ +\quad 345 \\ \hline \end{array}$ | $\begin{array}{r} 912 \\ +\quad 461 \\ \hline \end{array}$ |
| $\begin{array}{r} 476 \\ +485 \\ \hline \end{array}$ | $+\begin{aligned} & 655 \\ & 738 \end{aligned}$ | $\begin{array}{r} 379 \\ +\quad 648 \\ \hline \end{array}$ |  |

Challenge: Complete the following calculations:

| $\frac{+{ }^{3} \__{3}^{8}}{487}$ | $\begin{gathered} +\begin{array}{c} 641 \\ \hline 12 \_4 \end{array} \end{gathered}$ | $+\begin{gathered} 4 \ldots 5 \\ 1 \_4 \end{gathered}$ |
| :---: | :---: | :---: |

## Year 4:

## Adding 4-Digit Numbers with Regrouping

LO: I can add 4-digit numbers with regrouping.


## Challenge:

$$
1 \begin{array}{r}
2 \_32 \\
+31_{-} 2 \\
\hline-28 \_ \\
\hline
\end{array}
$$

2

$3 \begin{array}{r}25 \_7 \\ +\quad 39 \_ \\ \hline 7 \_65 \\ \hline\end{array}$
4

| $8 \_2$ |
| ---: |
| $+\quad 060$ |
| $-08 \_1$ |

Multiplication
2．Work out these answers：
a） $2 \times 6=$ $\qquad$ d） $8 \times 6=$ $\qquad$
b） $12 \times 6=$ $\qquad$ e） $7 \times 6=$ $\qquad$
c） $5 \times 6=$ $\qquad$ f） $6 \times 6=$ $\qquad$

3．How many blocks are there？
a）

$$
\begin{aligned}
& \square \\
& \square \\
& \square \\
& \square
\end{aligned}
$$

$$
x_{ـ}=
$$

$\qquad$
b）昌 $\quad$ 昌
昌
日
日
$\square$ $\qquad$
X $\qquad$ $=$ $\qquad$
c）

$\square$

$\qquad$ $=$ $\qquad$

